
Pairwise Neural Networks (PairNets) with Low Memory
for Fast On-Device Applications

Luna M. Zhang

BigBear, Inc.

Abstract

A traditional artificial neural network (ANN) is normally
trained slowly by a gradient descent algorithm, such as the
backpropagation algorithm, since a large number of hyperpa-
rameters of the ANN need to be fine-tuned with many train-
ing epochs. Since a large number of hyperparameters of a
deep neural network, such as a convolutional neural network,
occupy much memory, a memory-inefficient deep learning
model is not ideal for real-time Internet of Things (IoT) ap-
plications on various devices, such as mobile phones. Thus,
it is necessary to develop fast and memory-efficient Artifi-
cial Intelligence of Things (AIoT) systems for real-time on-
device applications. We created a novel wide and shallow
4-layer ANN called “Pairwise Neural Network” (“PairNet”)
with high-speed non-gradient-descent hyperparameter opti-
mization. The PairNet is trained quickly with only one epoch
since its hyperparameters are directly optimized one-time via
simply solving a system of linear equations by using the mul-
tivariate least squares fitting method. In addition, an n-input
space is partitioned into many n-input data subspaces, and a
local PairNet is built in a local n-input subspace. This divide-
and-conquer approach can train the local PairNet using spe-
cific local features to improve model performance. Simula-
tion results indicate that the three PairNets with incremen-
tal learning have smaller average prediction mean squared er-
rors, and achieve much higher speeds than traditional ANNs.
An important future work is to develop better and faster non-
gradient-descent hyperparameter optimization algorithms to
generate effective, fast, and memory-efficient PairNets with
incremental learning on optimal subspaces for real-time AIoT
on-device applications.

Introduction
Research in Artificial Neural Networks (ANNs) has had var-
ious important breakthroughs since the first work in ANNs
was done in 1943 (McCulloch and Pitts 1943). In general,
three major types of ANNs include the neuroscience-based
ANN, the non-neuroscience-based ANN, and the hybrid
ANN based on both neuroscience and other sciences. Brief
overviews about the three ANNs are introduced as follows.

The first important research problem is how to develop an
effective ANN based on neuroscience and cognitive science.

AAAI-2020 Workshop on Artificial Intelligence of Things.

Hebb reinforced the artificial neurons defined by McCulloch
and Pitts and showed how they worked in 1949 (Hebb 1949).
It noted that neural pathways were strengthened each time
that they were used. If two nerves fire simultaneously, then
the connection between them becomes enhanced. The ad-
vanced Hebbian-LMS learning algorithm was developed in
2015 (Widrow et al. 2015).

The second important research problem is how to de-
velop an effective ANN based on sciences other than neuro-
science. In 1957, Rosenblatt invented the perceptron (Rosen-
blatt 1958). Unfortunately, the simple single-layer percep-
tron had limited ability for pattern recognition (Minsky and
Papert, 1969). In 1959, Widrow and Hoff developed new
models called ADALINE and MADALINE. MADALINE
(Many ADALINE) was the first neural network to be ap-
plied to real world problems (Widrow and Hoff 1992). In
1960, Widrow and Hoff developed the least mean squares
(LMS) algorithm (Widrow et al. 1960). In early 1970s, Wer-
bos developed the non-neuroscience-based backpropagation
algorithm for training multilayer neural networks (Werbos
1974). Backpropagation is an efficient and precise technique
in calculating all of the derivatives of a target quantity, such
as pattern classification error with respect to a large set of
input quantities, which may be weights in a neural network.
The weights get optimized to minimize the loss function
(Werbos 1990). Rumelhart, Hinton, and Williams publicized
and described the backpropagation method for multilayer
neural networks in 1986 (Rumelhart et al. 1986). In recent
years, Deep Neural Networks (DNNs) with more hidden lay-
ers than shallow neural networks have many applications
in computer vision (Larochelle et al. 2009; He et al. 2016;
Szegedy et al. 2015), image processing (Krizhevsky et al.
2012), pattern recognition (Szegedy et al. 2017), bioinfor-
matics (Esteva et al. 2017), etc. Deep learning is an impor-
tant research area in machine learning and artificial intel-
ligence that allows computational models with many pro-
cessing layers to more accurately learn and model high-
level abstractions from data (LeCun et al. 2015). An appli-
cation is DeepMind’s AlphaGo, a computer program that
is very powerful in the game of Go (Silver et al. 2016).
It uses neural networks as one of its techniques, with ex-
tensive training. Deep belief networks are a specific type

of DNN that are probabilistic models with layers typically
made of restricted Boltzmann machines (Hinton et al. 2006).
In particular, DNNs, such as Convolutional Neural Networks
(CNNs), typically take a very long time to be trained well.

The third important research problem is how to develop
an effective hybrid ANN based on both neuroscience and
other sciences. For example, a new plastic neural network
has a hybrid architecture based on properties of biological
neural networks and a traditional ANN (Miconi et al. 2018).
However, it still applies the slow backpropagation training
algorithm to optimize weights of the plastic neural network.

The ANN and the hybrid ANN have hyperparameters to
be optimized, such as weights between neurons, numbers
of different layers, numbers of neurons on different layers,
and different activation functions mapping summations of
weighted inputs to outputs. An important research goal is
to develop a new ANN with high computation speed and
high performance, such as low validation errors, for various
real-time machine learning applications. Some problems are
discussed as follows.

First, backpropagation is a popular gradient descent-based
training algorithm that is used to optimize weights, but it is a
very slow optimization process which needs extensive train-
ing with many epochs. Other intelligent training algorithms
use various advanced optimization methods, such as genetic
algorithms (Loussaief and Abdelkrim 2018), and particle
swarm optimization methods (Sinha et al. 2018) and to try
to find optimal hyperparameters of an ANN. However, these
commonly used training algorithms also require very long
training times.

Secondly, neural network structure optimization algo-
rithms also take a lot of time to find optimal or near-optimal
numbers of different layers and numbers of neurons on dif-
ferent layers. Especially, DNNs need much longer time.
Thus, it is useful to develop fast wide and shallow neural
networks with relatively small numbers of neurons on dif-
ferent layers for real-time machine learning applications.

Traditionally, an ANN is trained very slowly by a gradi-
ent descent algorithm such as the backpropagation algorithm
since a large number of hyperparameters of the ANN need
to be fine-tuned with many training epochs. Therefore, the
ANN’s hyperparameter optimization challenge is how to de-
velop high-speed non-gradient-descent training algorithms
to optimize ANN’s architecture. Many current DNNs, such
as CNNs, occupy a lot of memory. Thus, it is necessary to
develop fast and memory-efficient machine learning systems
for real-time AIoT applications.

For these long-term research problems related to build-
ing fast and memory-efficient systems of AIoT, we created a
novel shallow 4-layer ANN called the Pairwise Neural Net-
work (PairNet) (Zhang, 2019). In this paper, we created a
new high-speed non-gradient-descent hyperparameter opti-
mization algorithm with incremental learning for a PairNet
with low memory for real-time AIoT applications.

Pairwise Neural Network (PairNet)
For a regression problem, the PairNet consists of four lay-
ers of neurons that map n inputs on the first layer to one
numerical output on the fourth layer.

Layer 1: Layer 1 has n neuron pairs to map n inputs to 2n
outputs. Each pair has two neurons where one neuron has
an increasing activation function gi(xi) ∈ [0, 1] that gener-
ates a positive normalized value, and the other neuron has a
decreasing activation function (1 − gi(xi)) that generates a
negative normalized value for i = 1, 2, ..., n.

Layer 2: Layer 2 consists of 2n neurons, where each neu-
ron has an activation function to map n inputs to an output
as a complementary decision fusion. Each of the n inputs is
an output of one of the two neurons of each neuron pair on
Layer 1. Let gi denote gi(xi), and ḡi denote (1− gi(xi)) for
i = 1, 2, ..., n. Sample activation functions of neurons on
Layer 2 are given as follows:

w1 = α1g1 + α2g2 + ...+ αn−1gn−1 + αngn,

w2 = α1g1 + α2g2 + ...+ αn−1gn−1 + αnḡn,

......,

w2n−1 = α1ḡ1 + α2ḡ2 + ...+ αn−1ḡn−1 + αngn,

w2n = α1ḡ1 + α2ḡ2 + ...+ αn−1ḡn−1 + αnḡn, (1)

where αi are hyperparameters to be optimized for 0 ≤
αi ≤ 1, i = 1, 2, ..., n, and

∑n
i=1 αi = 1.

∑2n

k=1 wk =
2n−1

∑n
i=1 αi(gi + ḡi) = 2n−1

∑n
i=1 αi = 2n−1. For a

special case, equal weights αi = 1
n for i = 1, 2, ..., n.

Layer 3: Layer 3 also consists of 2n neurons but trans-
forms the outputs of the second layer to 2n individual output
decisions.

wk = 1 +
y1k − ck
ηk

for (ck − ηk) ≤ yk ≤ ck, (2)

wk = 1− y2k − ck
δk

for ck ≤ yk ≤ (ck + δk), (3)

where k = 1, 2, ..., 2n. ȳk, sample activation functions of
neurons on Layer 3, are defined as

ȳk =
y1k + y2k

2
= ck +

(1− wk)γk
2

, (4)

where γk = δk − ηk.
Layer 4: Layer 4 calculates a final output decision by

computing a weighted average of the 2n individual output
decisions of Layer 3. f(x1, x1, ..., xn), a sample activation
function of the output neuron on Layer 4, is given by

f(x1, x1, ..., xn) =

2n∑
k=1

βkȳk, (5)

where βk = wk∑2n

j=1 wj
= wk

2n−1 .

For convenience, we have

f(x1, x1, ..., xn) =

f̄(x1, x1, ..., xn) + f̃(x1, x1, ..., xn), (6)

where

f̄(x1, x1, ..., xn) =

2n∑
k=1

βkck, (7)

f̃(x1, x1, ..., xn) =

2n∑
k=1

βkθkγk, (8)

where θk = 1−wk

2 for k = 1, 2, ..., 2n.
We have

f(x1, x1, ..., xn) =

2n∑
k=1

(βkck + βkθkγk). (9)

Finally, the PairNet f(x1, x1, ..., xn) consists of the linear
f̄(x1, x1, ..., xn) and the nonlinear f̃(x1, x1, ..., xn).

A 3-input-1-output PairNet is shown in Fig. 1.

Figure 1: A 3-input-1-output PairNet

Fast Training Algorithm with
Hyperparameter Optimization

We develop a new fast multivariate least-squares algorithm
to directly find optimal hyperparameters for the best-fitting
model by quickly solving a system of linear equations for a
given training dataset. For n inputs, 2n+1 linear equations
need to be solved to get 2n+1 hyperparameters to minimize
the mean squared error (MSE). Significantly, gradient de-
scent training with a large number of epochs is not needed
at all. The PairNet is quickly trained with only one epoch us-
ing the multivariate least squares fitting method since more
epochs are not applicable.

A data set has n inputs xi for i = 1, 2, ..., n, and one
output y. It has N data. An input xi has mi intervals in
[ai, bi] such that [ai, ai1], [ai1, ai2], ..., [aimi−2, aimi−1],
and [aimi , bi] for mi ≥ 1, and i = 1, 2, ..., n. Then there are
M (M =

∏n
i=1mi) n-dimensional subspaces Sj for j =

1, 2, ...,M . N data are distributed in the M n-dimensional
subspaces. A n-dimensional subspace Sj has Nj data with
Nj outputs Y jp for j = 1, 2, ...,M , p = 1, 2, ..., Nj , and
N =

∑M
j=1Nj . For each n-dimensional subspace such as

([a11, a11], [a21, a22], ..., [an−11, an−12], and [an1, an2]), a

PairNet can map n inputs xi for i = 1, 2, ..., n to one output
fj(x1, ..., xn) for j = 1, 2, ...,M . Thus, an n-input space
is partitioned into many n-input data subspaces, and a local
PairNet is built in a local n-input subspace. This divide-and-
conquer approach can train the local PairNet using specific
local features to improve model performance.

The objective optimization function for a PairNet
fj(x1, ..., xn for j = 1, 2, ...,M is given below:

Q =
1

2

Nj∑
p=1

[Y jp − fj(x1p , x2p , ..., xnp
)]2. (10)

Q =
1

2

Nj∑
p=1

[Y jp −
2n∑
k=1

(βjkpc
j
k + βjkpθ

j
kp
γjk)]2. (11)

To minimize Q by optimizing 2n+1 parameters (cjk and
γjk) for k = 1, 2, ..., 2n, we have{ ∂Q

∂cjk
= 0

∂Q

∂γj
k

= 0,
(12)

then we have{ ∑N
p=1 β

j
kp
(Y j

p −
∑2n

q=1(β
j
qpcq + βj

qpθ
j
qpγ

j
q)) = 0∑N

p=1 β
j
kp
θjkp

(Y j
p −

∑2n

q=1(β
j
qpcq + βj

qpθ
j
qpγ

j
q)) = 0.

(13)

We have 2n+1 linear equations with 2n+1 hyperparame-
ters (ck and γk) for k = 1, 2, ..., 2n as follows:

∑N
p=1 β

j
1p

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
1p
Y j
p .∑N

p=1 β
j
2p

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
2p
Y j
p .

...∑N
p=1 β

j
2np

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
2np
Y j
p .∑N

p=1 β
j
1p
θj1p

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
1p
θj1pY

j
p .∑N

p=1 β
j
2p
θj2p

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
2p
θj2pY

j
p .

...∑N
p=1 β

j
2np
θj
2np

∑2n

q=1(β
j
qp

(cjq + θjqpγ
j
q)) =

∑N
p=1 β

j
2np
θj
2np
Y j
p .

(14)

The fast hyperparameter optimization algorithm for
creating M PairNet models in M subspaces is given in
Algorithm 1.

Algorithm 1 Fast Hyperparameter Optimization Algorithm
for Generating PairNet Models in Different Subspaces
Input: mi (the number of intervals of each input xi) for

i = 1, 2, ..., n
Output: optimized hyperparameters cjl and γjl for l =

1, 2, ..., 2n for a subspace Sj for j = 1, 2, ...,M

1: for j = 1 to M do
2: For each subspace Sj , calculate hyperparameters cjl

and γjl for l = 1, 2, ..., 2n based on Eq. (14).
3: end for
4: return M PairNet Models fj(x1, x1, ..., xn) for j =

1, 2, ...,M .

A simple PairNet model selection algorithm with a ran-
dom search method is given in Algorithm 2.

Algorithm 2 PairNet Model Selection Algorithm with Ran-
dom Search
Input: K: the number of candidate PairNet models
Output: the best PairNet model

1: Randomly generate M subspaces Sj for j =
1, 2, ...,M .

2: Run Algorithm 1.
3: Evaluate the performance of the newly generated Pair-

Net model with M local PairNet models for the M sub-
spaces.

4: Set the best PairNet model as the newly generated Pair-
Net model.

5: for k = 1 to K do
6: Randomly generate Mk subspaces Skj for j =

1, 2, ...,Mk.
7: Run Algorithm 1.
8: Evaluate the performance of the newly generated

PairNet model.
9: If the newly generated PairNet model is better than

the best PairNet model, then the best PairNet model is
the newly generated PairNet model.

10: end for
11: return the best PairNet model.

Algorithm 3, a fast incremental learning method, can
quickly train a local PairNet for new real-time training data.
The saved optimized hyperparameters of Eq. (14) are re-
used for future real-time incremental learning. If the num-
ber of inputs is not large, then the optimized hyperparame-
ters need small memory. Thus, the fast and memory-efficient
PairNets with incremental learning are suitable for real-time
on-device AIoT applications.

Algorithm 3 Incremental Learning Algorithm for PairNets
Input: K: the number of candidate PairNet models
Output: the trained PairNets for real-time prediction

1: Run Algorithm 2 using K to initially pre-train all local
PairNets in all subspaces by using currently available
training data.

2: for each new training data d do
3: Find the appropriate subspace for d.
4: Use d to solve Eq. (14) to update the hyperparame-

ters of a local PairNet in the subspace, and save them.
5: Create a new local PairNet with the optimized hy-

perparameters in the subspace.
6: end for
7: return trained local PairNets for real-time prediction.

Algorithm 4 shows the basic steps of using the trained
PairNet for real-time prediction.

Algorithm 4 Real-time PairNet Prediction Algorithm
Input: real-time input data d
Output: a predicted value

1: Find an appropriate subspace for d.
2: Use the trained local PairNet in the appropriate subspace

to map d to a predicted value.
3: return a predicted value.

Performance Analysis for Real-time Time
Series Prediction

Daily time series data starting on 7/1/1954 (Historical Data
and Trend Chart of Effective Federal Funds Rate) were con-
verted into 16,185 3-input-1-output training data, 50 testing
data, 75 testing data, and 100 testing data. Incremental learn-
ing was done only on the testing dataset. Each daily test data
became the new training data d for Algorithm 3 to evaluate
its performance. The inputs are 3 consecutive days’ rates,
and the output is the 4th day’s rate. The range of the training
data inputs is [0.13, 22.36]. A traditional ANN with incre-
mental learning is noted as ANNIL. The three-input-one-
output PairNet is denoted as PairNetijk with i × j × k
subspaces, where the three inputs has i intervals, j inter-
vals, and k intervals. Initially, an ANNIL was pre-trained
by using 16,185 training data. The ANNIL has two hid-
den layers with 50 neurons on each layer. Algorithm 3 using
K=200 was used to pre-train PairNets with 2, 4 and 8 sub-
spaces by using 16,185 training data. Then, the pre-trained
ANNIL and the pre-trained PairNet performed daily incre-
mental learning; they were trained by using a new daily
data. Finally, the incrementally-trained ANNIL predicted
the next day’s rate, and Algorithm 4 was used for an appro-
priate local PairNet to predict the next day’s rate. Two even
intervals ([0.13, 11.245] and [11.245, 22.36]) are used.

Table 1 shows the average prediction MSEs of ANNIL
using different training epochs, and average prediction
MSEs of seven PairNets with different subspaces forN test-
ing data. Simulation results shown in Table 1 indicate that
the seven PairNets have smaller average prediction MSEs
than the six ANNIL models. PairNet222 with 8 subspaces
achieves all three lowest prediction MSEs.

The overall average prediction MSEs of PairNets with 2
subspaces, 4 subspaces, and 8 subspaces are 0.0612, 0.0582,
and 0.0536, respectively. For this case, the more subspaces a
PairNet has, the more accurate it makes predictions. More
research on the relationship between the nunber of sub-
spaces and performance of a PairNet will be done with more
simulations. The overall average prediction MSE of the six
ANNIL models is 0.0743. Thus, the PairNets perform bet-
ter than the ANNIL models based on the overall average
prediction MSEs.

Table 2 shows the average daily training times of the six
ANNIL models, and those of the seven PairNets. Simula-
tion results indicate that the seven PairNets achieve much
higher speeds than the six ANNIL models.

A PairNet with 2 subspaces (PairNet112, PairNet121,
and PairNet211), denoted as PairNet1, needs 14KB

Table 1: Average Prediction MSEs of ANNIL and PairNets
Neural Network Epochs N = 50 N = 75 N = 100
ANNIL 100 0.0708 0.0828 0.0727
ANNIL 200 0.0598 0.0909 0.0776
ANNIL 300 0.0636 0.0813 0.0694
ANNIL 1000 0.0609 0.0827 0.0746
ANNIL 2000 0.0703 0.0857 0.0847
ANNIL 3000 0.0621 0.0808 0.0675
PairNet112 1 0.0536 0.0727 0.0617
PairNet121 1 0.0458 0.0679 0.0579
PairNet211 1 0.0547 0.0728 0.0636
PairNet122 1 0.0478 0.0693 0.0587
PairNet212 1 0.0502 0.0670 0.0579
PairNet221 1 0.0465 0.0677 0.0588
PairNet222 1 0.0448 0.0624 0.0535

Table 2: Average Daily Training Times (seconds)
Neural Network Epochs N = 50 N = 75 N = 100
ANNIL 100 0.15488 0.17605 0.17190
ANNIL 200 0.34944 0.34096 0.35673
ANNIL 300 0.59982 0.56120 0.57743
ANNIL 1000 1.97139 1.99363 2.04981
ANNIL 2000 4.05327 4.44860 3.97650
ANNIL 3000 6.83142 6.71835 6.38905
PairNet112 1 0.00083 0.00080 0.00065
PairNet121 1 0.00099 0.00097 0.00104
PairNet211 1 0.00093 0.00104 0.00064
PairNet122 1 0.00130 0.00062 0.00106
PairNet212 1 0.00129 0.00086 0.00096
PairNet221 1 0.00107 0.00033 0.00114
PairNet222 1 0.00095 0.00124 0.00056

memory for its hyperparameters. A PairNet with 4 subspaces
(PairNet122, PairNet212, and PairNet221), denoted as
PairNet2, needs 28KB memory for its hyperparameters.
PairNet222 needs 42KB memory for its hyperparameters.
The code for a PairNet needs 19KB memory. The memory
sizes of trained ANNIL models with different numbers of
hidden layers (50 neurons on each layer) are given in Table
3. Thus, the 3-hidden-layer PairNet is much more memory-
efficient than theANNIL models. TheANNIL with 50 hid-
den layers needs 1,867KB memory. DNNs with more than
50 hidden layers will need much bigger memory. Thus, the
fast and memory-efficient PairNet is more suitable than a
traditional ANN for various devices with small memory that
are used in real-time AIoT on-device applications.

Conclusions
Different from slow gradient descent training algorithms
and other tedious training algorithms, such as genetic al-
gorithms, the new high-speed non-gradient-descent train-
ing algorithm with direct hyperparameter computation can
quickly train the new wide and shallow 4-layer PairNet with
only one epoch since its hyperparameters are directly opti-
mized one-time via simply solving a system of linear equa-
tions by using the multivariate least squares fitting method.
For AIoT applications, partitioning big data space into many

Table 3: Memory Sizes of the ANNIL and the PairNets
Neural Network Hidden Layers Memory (KB)
PairNet1 3 33
PairNet2 3 47
PairNet222 3 61
ANNIL 3 101
ANNIL 5 176
ANNIL 10 363
ANNIL 20 740
ANNIL 50 1867

small data subspaces is useful and easy to build local Pair-
Nets because having nonlinear functions on small data sub-
spaces are simpler than having a global function on the
whole big data space.

Simulation results indicate that the PairNets have smaller
average prediction MSEs, and achieve much higher speeds
than the ANNs for the real-time time series prediction ap-
plication. Thus, it is feasible and necessary to continue to
improve the effectiveness and efficiency of the new shal-
low PairNet by developing more intelligent non-gradient-
descent training algorithms for real-time AIoT applications.

Future Works
The PairNet’s performance will be compared with that of
other existing techniques, such as LSTM-based recurrent
neural network, and more datasets will be used. Although
the PairNet is a shallow neural network since it has only four
layers of neurons, it is actually a wide neural network be-
cause both the second layer and the third layer have 2n neu-
rons with the first layer having n neurons. Thus, the PairNet
has the curse of dimensionality. We will develop advanced
divide-and-conquer methods to solve the problem.

The preliminary simulations applied an even data parti-
tioning method to divide a whole 3-input space into sub-
spaces. In the future, more intelligent space partition meth-
ods will be created to build more effective local PairNets
on optimized n-input data subspaces. Also, for classification
problems, the new PairNet with a new activation function,
such as Softmax, of the neuron on Layer 4 will be created.

Furthermore, for image classification problems, the new
PairNet (for classification problems) can replace the fully
connected layer of a CNN with the goal of making a fast
CNN with high performance. It will be evaluated by solv-
ing commonly used benchmark classification problems us-
ing datasets like MNIST, CIFAR10, and CIFAR100.

In summary, a significant future work is to develop bet-
ter and faster non-gradient-descent hyperparameter opti-
mization algorithms to generate effective, fast and memory-
efficient PairNets on optimal subspaces for real-time AIoT
on-device applications.

Acknowledgments
The author would like to thank the reviewers very much for
their valuable comments that help improve the quality of this
paper.

References
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.;
Blau, H.M.; and Thrun, S. 2017. Dermatologist-level clas-
sification of skin cancer with deep neural networks. Nature
542(7639): 115–118.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 770–778.
Hebb, D.O. 1949. The Organization of Behavior: A Neu-
ropsychological Theory. New York: John Wiley & Sons, Inc.
Hinton, G.; Osindero, S.; and Teh, Y.-W. 2006. A fast learn-
ing algorithm for deep belief nets. Neural Computation
18(7): 1527–1554.
Historical Data and Trend Chart of Ef-
fective Federal Funds Rate. https :
//www.forecasts.org/data/data/DFF.htm.
Krizhevsky, A.; Sutskever, I.; and Hinton, G.E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems 25, 1097–1105.
Larochelle, H.; Bengio, Y.; Louradour, J.; and Lamblin, P.
2009. Exploring Strategies for Training Deep Neural Net-
works. Journal of Machine Learning Research 10: 1–40.
LeCun, Y.; Bengio, Y.; and Hinton, G.E. 2015. Deep learn-
ing. Nature 521: 436–444.
Loussaief, S.; and Abdelkrim, A. 2018. Convolutional Neu-
ral Network Hyper-Parameters Optimization based on Ge-
netic Algorithms. International Journal of Advanced Com-
puter Science and Applications 9(10): 252–266.
McCulloch, W. and Pitts, W. 1943. A logical calculus of the
ideas immanent in nervous activity. Bulletin of Mathemati-
cal Biophysics 5:115–133.
Miconi, T.; Clune, J.; and Stanley, K. O. 2018. Differentiable
plasticity: training plastic neural networks with backpropa-
gation. In Proceedings of the 35th International Conference
on Machine Learning, arXiv:1804.02464.
Minsky, M., and Papert, S. 1972. (2nd edition with cor-
rections, first edition 1969) Perceptrons: An Introduction to
Computational Geometry. The MIT Press, Cambridge MA.
Rosenblatt, F. 1958. The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain. Psy-
chological Review 65(6): 386–408.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. Nature
323: 533–536.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; Driessche, G. V. D.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature 529: 484–503.
Sinha, T.; Haidar, A.; and Verma, B. 2018. Particle Swarm
Optimization Based Approach for Finding Optimal Values

of Convolutional Neural Network Parameters. In Proceed-
ings of 2018 IEEE Congress on Evolutionary Computation,
1–6.
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. 2017.
Inception-v4, Inception-ResNet and the Impact of Resid-
ual Connections on Learning. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI-17),
4278–4284.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed S.;
Anguelov D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going Deeper with Convolutions. In Proceedings
of 2015 IEEE Conference on Computer Vision and Pattern
Recognition, 1–9.
Werbos, P. 1990. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE 78(10):
1550–1160, .
Werbos, P. 1974. Beyond Regression: New Tools for Pre-
diction and Analysis in the Behavioral Sciences. PhD thesis,
Harvard University.
Widrow B., and Hoff M.E. Jr. 1960. Adaptive switching cir-
cuits. In Proceedings of IRE WESCON Conf. Rec., part 4,
96–104.
Widrow B.; Kim Y.; and Park D. 2015. The Hebbian-
LMS Learning Algorithm. IEEE Computational Intelligence
Magazine 37–53.
Widrow, B., and Lehr, M.A. 1993. Artificial Neural Net-
works of the Perceptron, Madaline, and Backpropagation
Family. Proceedings of the Workshop on NeuroBionics,
Goslar, Germany. Neurobionics 133–205, H.-W. Bothe, M.
Samii, R. Eckmiller, eds., North-Holland, Amsterdam.
Zhang L. M. 2019. PairNets: Novel Fast Shallow Artificial
Neural Networks on Partitioned Subspaces. The 1st Work-
shop on Sets and Partitions at the 33rd Annual Conference
on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Dec. 14, 2019.

